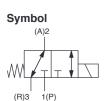
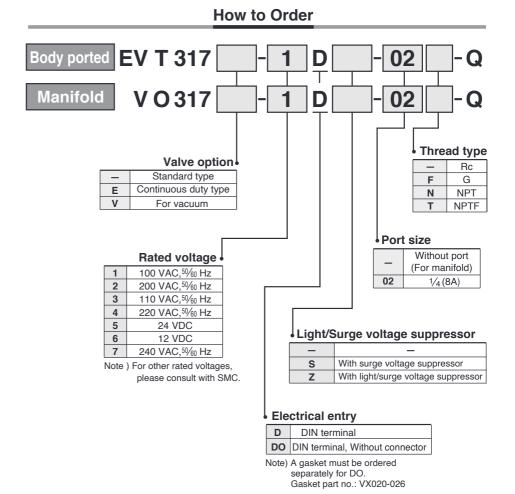
3 Port Solenoid Valve Direct Operated Poppet Type VT317 Series Rubber Seal

(€ 2%

C: $2.6 \text{ dm}^3/(\text{s}\cdot\text{bar})$ (Passage $2 \rightarrow 3$)


Suitable for use in vacuum applications


-101.2 kPa (For vacuum specifications: VT/VO317V)

A single valve with 6 valve functions

(Universal porting type)
Selective porting can provide 6 valve functions, such as N.C. valve, N.O. valve, Divider valve, Selector valve etc.

Manifold

Model	Applicable manifold type	Accessory					
VO317	Common or individual exhaust	O-ring (KA00066, 4 pcs.) Note)					
VO317	Common or individual exhaust	Hexagon socket head screw (XT012-25C#1, 2 pcs					

Note) It is not applied to "Continuous duty type". Refer to the accessories on page 1444.

Standard Specifications

Type of actuation			Direct operated type 2 position single solenoid					
Fluid			Air					
Operating pressure range			0 to 0.9 MPa					
Ambient and fluid temperature	е		-10 to 50 °C (No freezing)					
Response time (1)			30 ms or less (at the pressure of 0.5 MPa)					
Max. operating frequency			10 Hz					
Lubrication			Not required (Use turbine oil Class 1 ISO VG32, if lubricated)					
Manual override			Non-locking push type					
Mounting orientation			Unrestricted					
Impact/Vibration resistance (2)			150/50 m/s ²					
Enclosure			Dustproof					
Electrical entry			DIN terminal					
Cail rated valtage (V)	AC (50	/60 Hz)	100, 200, 110 *, 220 *, 240 *					
Coil rated voltage (V)		C	24, 12*					
Allowable voltage fluctuation			-15 to +10 % of rated voltage					
A = = = = = = = = = = = (2)	4.0	Inrush	19 VA (50 Hz), 16 VA (60 Hz)					
Apparent power (3)	AC	Holding	11 VA (50 Hz), 7 VA (60 Hz)					
Power consumption (3)		C	Without indicator light: 6 W, With indicator light: 6.3 W					
Light/Surge voltage suppressor	AC		Varistor, Neon bulb					
Light/Surge voltage suppressor		C	Varistor, LED (Neon bulb for 100 V or more)					

^{*} Semi-standard

Note 1) Based on dynamic performance test, JIS B 8419: 2010. (Coil temperature: 20 °C, at rated voltage, without surge suppressor) Note 2) Impact resistance: No malfunction occurred when it is tested with a drop tester in the axial direction and at the right angles to the main valve and armature in both energised and de-energised states every once for each condition. (Values at the initial period)

Vibration resistance: No malfunction occurred in a one-sweep test between 45 and 1000 Hz. Test was performed at both energised and de-energised states in the axial direction and at the right angles to the main valve and armature. (Values at the initial period)

Note 3) At rated voltage

Flow Rate Characteristics/Weight

								Flow rate ch	aracteristic	s						
Valve model	$1 \rightarrow 2 (P \rightarrow A)$			$2 \rightarrow 3 (A \rightarrow R)$			$3 \rightarrow 2 (R \rightarrow A)$			$2 \rightarrow 1 (A \rightarrow P)$						
	C [dm3/(s-bar)]	b	Cv	C [I/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [I/min /ANR)] *1	C [dm³/(s·bar)]	b	Cv	C [I/min /ANR)] *1	C [dm³/(s·bar)]	b	Cv	C [I/min /ANR)] *1
VT317																
VT317V (Vacuum spec. type)	2.4	0.26	0.62	595	2.6	0.34	0.67	678	2.8	0.25	0.67	690	2.5	0.37	0.66	666
VT317E (Continuous duty type)																

Note) Values for a single valve unit. It differs in the manifold case. Refer to manifold specifications on page 1444.

*1 These values have been calculated according to ISO 6358 and indicate the flow rate under standard conditions with an inlet pressure of 0.6 MPa (relative pressure) and a pressure drop of 0.1 MPa.

Valve Options

Continuous duty type: VT317E

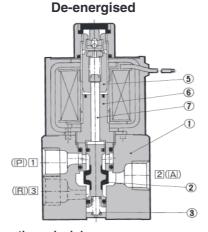
Exclusive use of VT317E is recommended for continuous duty with long time loading.

△ Caution

- 1. This model is for continuous duty, not for high cycle rates. But even in low cycle rates, if energising the valve more than once a day, please consult with SMC.
- 2. Energising solenoid should be done at least once in 30 days.

Vacuum spec. type: VT317V

This vacuum model has less air leakage than the standard model under low pressure. It is recommended for vacuum application.


Caution

1. Since this valve has slight air leakage, it can not be used for vacuum holding (including positive pressure holding) in the pressure container.

Specifications different from standard are as follows.

Operating pressure range | -101.2 kPa to 0.1 MPa

Construction

Operation principles <De-energised>

Spool valve ② is pushed upward by the return spring ③, port P is closed, and port A and port R are opened.

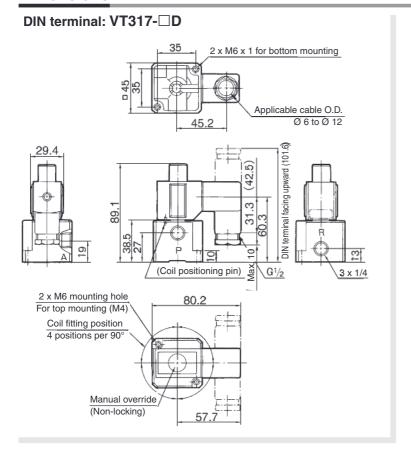
<Energised>

(P)1

(R)3

When an electric current is applied to the molded coil 4, the armature 5 is attracted to the core 6, and through the push rod 7, it pushes down the spool valve 2. Then, port P and port A are connected. At this time, there will be gaps between the armature 5 and the core 6, but the armature will be magnetically attracted to the core 6.

2(A)


Energised

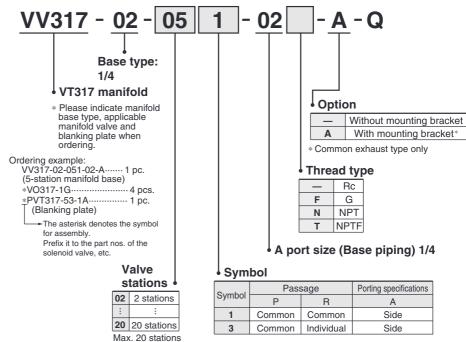
Component Parts

No.	Description	Material	Note
1	Body	Aluminum die-casted	Colour: Platinum silver
2	Spool valve	Aluminum, NBR	

Dimensions

VT317 Series

VV317-02-051-02


Manifold Specifications

VT317 manifold is B mount type and available both as a common exhaust and individual exhaust model.

How to Order Manifold

Manifold Specifications

.	
Manifold type	B mount
Max. number of stations	20 stations (1)
Applicable solenoid valve	VO317 ⁽³⁾

Exhau	ust port	Port location (Direction)/Port size						
Symbol	Type	Р	А	R				
1	Common (2)	Base (Side) 1/4 (3/8)	Base (Side)	Base (Side) 1/4 (3/8)				
3	Individual	Base (Side)	Base (Side)	Base (Side)				

Note 1) For more than 3 stations, supply air both sides of P port. The common exhaust type should exhaust from both of the R port.

Accessory for Applicable Solenoid

Description	Part no.	Qty	Note
O-ring	KA00066 (P10)	1	Standard type vacuum specifications type
O-IIIIg	KA00098 (P10F)	4	Continuous duty type
Hexagon socket head screw	XT012-25C#1(M4×0.7×20)	2	

Option

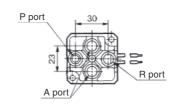
Description	Part no.				
Blanking plate (With screw, O-ring)	PVT317-53-1A				
Mounting bracket assembly	DXT010-37-4□A				
(With screw)	(For common exhaust)				

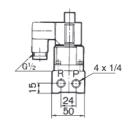
 $[\]Box$: Thread type (Refer to "How to Order".)

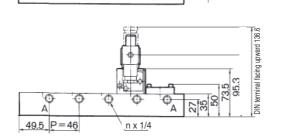
Flow Rate Characteristics/Weight

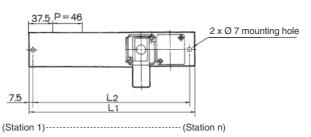
1 10W Hate	Tow Hate official of Weight															
		Flow rate characteristics														
Valve model	$1 \rightarrow 2 (P \rightarrow A)$			$2 \rightarrow 3 (A \rightarrow R)$			$3 \rightarrow 2 (R \rightarrow A)$			$2 \rightarrow 1 (A \rightarrow P)$						
	C [dm3/(s-bar)]	b	Cv	C [l/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [I/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [I/min /ANR)] *1	C [dm ³ /(s-bar)]	b	Cv	C [l/min /ANR)] *1
VT317																
VT317V (Vacuum spec. type)	2.0	0.11	0.47	456	2.2	0.12	0.49	505	2.0	0.14	0.45	464	2.1	0.14	0.48	487
VT317E (Continuous duty type)																

^{*1} These values have been calculated according to ISO 6358 and indicate the flow rate under standard conditions with an inlet pressure of 0.6 MPa (relative pressure) and a pressure drop of 0.1 MPa.


Note 2) In the case of common exhaust type, R and P ports size can be Rc 3/8 by using a mounting adaptor. Note 3) Can also be applied to VVT320 series manifold.

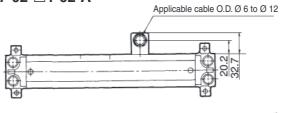

Dimensions: Common Exhaust (Interchangeable with VVT320 for mounting)

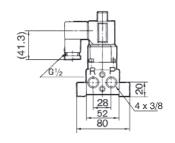

Difficultions. Common Exhaust (interchangeable with vv 1320 for mounting

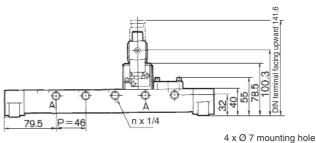

Without mounting bracket: VV317-02-□1-02 Applicable cable O.D. Ø 6 to Ø 12

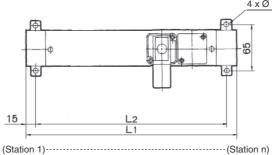
A single valve unit port location



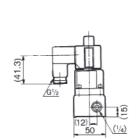


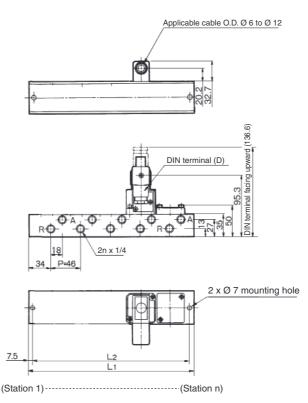

L Dimension


n: Stations


_	Stations	2	3	4	5	6	7	8	9	10	Formula
	L ₁	121	167	213	259	305	351	397	443	489	$L_1 = 46 \times n + 29$
	L ₂	106	152	198	244	290	336	382	428	474	$L_2 = 46 \times n + 14$

L	D	im	er	ISI	01	า


n: Stations


Stations	2	3	4	5	6	7	8	9	10	Formula
L ₁	181	227	273	319	365	411	457	503	549	$L_1 = 46 \times n + 89$
L ₂	151	197	243	289	335	381	427	473	519	$L_2 = 46 \times n + 59$

Dimensions: Individual Exhaust

Without mounting bracket/VV317-02-□3-02

	L Dimension n: Stations										
ĺ	Stations	2	3	4	5	6	7	8	9	10	Formula
	L ₁	121	167	213	259	305	351	397	443	489	L1 = 46 x n + 29
ĺ	L2	106	152	198	244	290	336	382	428	474	$12 = 46 \times n + 14$

Mounting

⚠ Warning

 When mounting valves on the manifold base, the mounting orientation is decided. If it is mounted in the wrong direction, connected equipment may malfunction. Mount it by referring to how to switch over from N.C. to N.O. specifications.

⚠ Caution

- Each valve is fixed to the manifold base with two M4 mounting screws. Tighten the screws evenly when re-mounting. Tightening torque of the mounting screw (M4): 1.4 N·m
- For mounting, tighten M4 or equivalent screws evenly into the mounting holes of the manifold base.

Changing from N.C. to N.O.

⚠ Caution

Universal porting permits convertibility N.C./N.O. by a simple 180 degree rotation. Mounting conditions for N.C. and N.O. is indicated as below figure.

Exhaust port type Valve	N.C.	N.O.
Common exhaust	A A	
Individual exhaust	R O	RO AD

* Changing from N.C. to N.O.

This product is delivered as N.C. valve. If N.O. valve is needed, remove mounting screws of the required valve and turn the valve at 180° degrees. (Make sure that there are O-rings fixed on 4 positions of the valve surface.) Then, tighten the mounting screws to fix the valve to the manifold base.

How to Use DIN Terminal

1. Disassembly

- After loosening the screw ①, then if the housing ④ is pulled in the direction of the screw ①, the connector will be removed from the body of equipment (solenoid, etc.).
- 2) Pull out the screw ①, then remove the gasket ②
- 3) On the bottom part of the terminal block ③, there's a cut-off part (indication of an arrow) ③. If a small flat head screwdriver is inserted between the opening in the bottom, terminal block ③ will be removed from the housing ④. (Refer to graph at right)
- (Refer to graph at right.)
 4) Remove the cable gland ⑤ and plain washer ⑥ and rubber seal ⑦.

2. Wiring

- Pass the cable ® through the cable gland ⑤, washer ⑥, rubber seal ⑦, in this order and then insert them into the housing ④.
 Dimensions of the cable ® are as
- Dimensions of the cable ® are as shown in the right figure. Skin the cable and crimp the crimped terminal 9 to the edges.
- 3) Remove the screw with washer ③ from the bracket ⑤. (Loosen in the case of Y-shape type terminal.) As shown in the right figure, mount a crimped terminal ⑨, and then again tighten the screw ⑥. Note) Tighten within the tightening torque of 0.5 N·m ±15%.

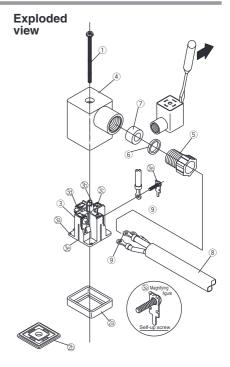
Note: a It is possible to wire even in the state of bare wire. In that case,

loosen the screw with washer and place a lead wire into the bracket and then tighten it once again.

b The maximum size for the round terminal (9) is 1.25 mm²—3.5 and for the Y terminal is 1.25 mm²—4.

c Cable ® outside diameter: Ø 6 to Ø 12 mm

Note) For the one with outside diameter ranged between Ø 9 to Ø 12 remove the inside parts of the rubber seal ⑦ before using.


3. Assembly

- Terminal box ③ connected with housing ④ should be reinstated. (Push it down until you hear the click sound.)
- 2) Putting rubber seal ⑦, plain washer ⑥, in this order into the cable introducing slit on the housing ④, then further tighten the cable gland ⑤ securely.
- 3) By inserting gasket ② between the bottom part of the terminal box ③ and a plug on an equipment, screw in ① on top of the housing ④ and tighten it.

 Note) Tighten within the tightening torque of 0.5 N⋅m ±20%.

Changing the entry direction

The cable entry direction of a connector can be changed as desired (4 directions at 90° intervals), depending on the combination of a housing (4) and a terminal block (3).

Comparison between the Product Model No. and the Coil Part No.

Product model no.	Coil no.	Coil assembly with terminal part no.				
VT/O317□-*D(-02)	PVT317-001DB-0*	PVT317-001DBT-0*				
VT/O317□-*DS(-02)	PVT317-001DB-0*	PVT317-001DBTS-0*				
VT/O317□-*DZ(-02)	PVT317-001DB-0*	PVT317-001DBTZ-0*				

Note 1) * mark in the product model numbers denotes the rated voltage.

Note 2) ☐ mark denotes the valve option.

Note 3) * mark and 0* mark are for coil part number and coil assembly with terminal the rated voltage.

Example 1) In the case of 0* PVT317-001GB-05

Example 2) In the case of * PVT317-5G

Note 4) Coils are not shipped together.

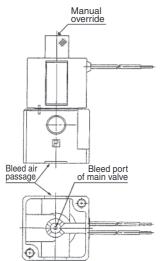
∧ Caution

When the rated voltage is AC and if it is assembled with the coil for DC, response may be delayed and occur malfunction. Also, for DC valves, when the coil for AC is assembled, it occurs malfunction. For AC valves, assemble the coil for AC, and for DC valves, assemble the coil for DC.

Connector for DIN Terminal

Rated voltage	Without light/surge voltage suppressor (D)	With surge voltage suppressor (DS)	Light/Surge voltage suppressor (DZ)
100 VAC		GDM2A-S1	GDM2A-Z1
200 VAC	GDM2A	GDM2A-S2	GDM2A-Z2
24 VDC		GDM2A-S5	GDM2A-Z5

For other rated voltages, please consult with SMC

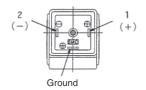


VT317 Series Specific Product Precautions

Be sure to read this before handling the products.

⚠ Caution

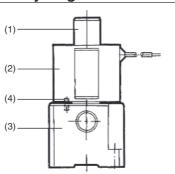
- A bleed port for the main valve is located at the bottom of the solenoid valve. Since blocking it causes malfunction, do not block it.
- * Ordinarily, when the solenoid valve is mounted on a metal surface, it can breathe through the breather hole, via the breather groove. However, in particular, if the surface to be mounted is made of the rubber, the rubber could deform and block the hole.
- 2. Make sure that dust and/or other foreign materials should not enter the valve from the unused port (e.g. exhaust port). Also, since there is a bleed port for the armature in the manual override, do not allow accumulation of dust and/or other foreign materials to block bleed port.


Bottom of the solenoid valve

How to Calculate the Flow Rate

For obtaining the flow rate, refer to front matter.

Electrical Connection


DIN terminal is connected inside as in the figure below. Connect to the corresponding power supply.

A Caution

Change of Electrical Entry Angle

- **1.** The VT317 series can change electrical entry angle. (4 positions)
- 2. How to change: Loosen the nut (1), remove the coil (2) from the body assembly (3), place the positioning pin (4) at the required place, put back the coil (2) to its place, and tighten sufficiently with lock nut (1).

∧ Caution

Lock Nut

If the lock nut comes off due to insufficient tightening, vibration, etc., the position of the coil may deviate, causing it to burn out. To prevent such occurrences, periodically check whether the lock nut has loosened.

Light/Surge Voltage Suppressor

		DIN terminal (D)
Surge voltage suppressor (S)	AC	Varistor [□] [3] 0
	DC	0
Light/Surge voltage	AC	Varistor Varistor
suppressor (Z)	DC	48 VDC or less 100 VDC Neon bulb Varistor Varistor Varistor

Protection circuit for light/surge voltage suppressor is not the polarity type.

3 Port Solenoid Valve Direct Operated Poppet Type

VT325 Series

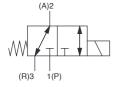
Rubber Seal

(€ CK

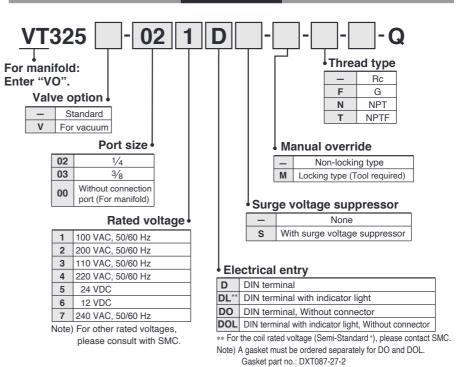
C: 0.61 dm³/(s·bar) {Rc 3/8 (Passage $2 \rightarrow 3$)}

A single valve with 6 valve functions

(Universal porting type)
Six valve functions can be attained by selecting the piping ports. (Enabling the N.C. valve, N.O. valve, divider valve, selector valve, etc. to be used as desired.)


Suitable for use in vacuum applications

-101.2 kPa


(For vacuum specifications type: VT/VO325V)

Symbol

How to Order

Manifold

Model	Applicable manifold	Accessory			
VO325-00	B mount common exhaust type	Gasket (DXT083-13-1) Bolts (DXT083-19-1, 2 pcs.)			

Specifications

Type of actuation	Direct operated type 2 position single solenoid		
Fluid	Air		
Operating pressure range	0 to 1.0 MPa		
Ambient and fluid temperature	5 to 50 °C		
Max. operating frequency	5 Hz		
Response time (1)	30 ms or less (at the pressure of 0.5 MPa)		
Lubrication	Not required (Use turbine oil Class 1 ISO VG32, if lubricated.)		
Manual override	Non-locking push type		
Impact/Vibration resistance (2)	150/50 m/s ²		
Enclosure	Dustproof		

Note 1) Based on dynamic performance test, JIS B 8419: 2010. (Coil temperature: 20 °C, at rated voltage, without surge suppressor)

Note 2) Impact resistance: No malfunction occurred when it is tested with a drop tester in the axial direction and at the right angles to the main valve and armature in both energized and de-energized states every once for each condition. (Values at the initial period)

Vibration resistance: No malfunction occurred in a one-sween test between 45 and 1000 Hz. Test was

Vibration resistance: No malfunction occurred in a one-sweep test between 45 and 1000 Hz. Test was performed at both energized and de-energized states in the axial direction and at the right angles to the main valve and armature. (Values at the initial period)

Solenoid Specifications

Electrical entry		DIN terminal				
Coil rated voltage		100, 200 VAC, 50/60 Hz, 24 VDC				
Allowable voltage fluctuation		-15 to +10 % of rated voltage				
		Inrush	50 Hz	75 VA		
A = = = = = = (3)	AC		60 Hz	60 VA		
Apparent power (3)	AC		50 Hz	27 VA		
		Holding	60 Hz	17 VA		
Power consumption (3)	DC		12 W			

Note 3) At rated voltage

Flow Rate Characteristics/Weight

			Flow rate characteristics														
Valve model	Port		1 → 2	(P →	· A)	2	. → 3	(A -	→ R)	3 -	→ 2 (l	R o	A)	2	$2 \rightarrow 1$	(A –	→ P)
	size	C [dm³/(s·bar)]	b	Cv	C [I/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [l/min /ANR)] *1	C [dm³/(s·bar)]	b	Cv	C [I/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [l/min /ANR)] *1
VT325																	
VT325V (Vacuum spec. type)	1/4	5.5	0.37	1.4	1464	5.9	0.35	1.5	1550	5.5	0.33	1.4	1425	5.7	0.32	1.4	1468
VT325																	
VT325V (Vacuum spec. type)	3/8	5.5	0.37	1.4	1464	6.1	0.37	1.6	1624	5.7	0.34	1.4	1487	6.6	0.25	1.5	1627

Note) Values for a single valve unit. It differs in the manifold case. Refer to manifold specifications on page 1452.

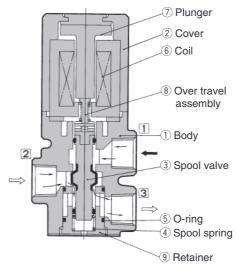
Valve Option

1. For vacuum

△ Caution

- Since this valve has slight air leakage, it can not be used for holding vacuum (including positive pressure holding) in the pressure container.
- 2. With surge voltage suppressor, with indicator light

Circuit for Indicator Light

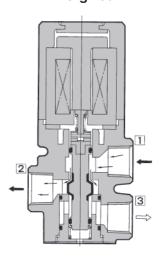

	AC	DC
DIN terminal with indicator light (DL)	Neon & Jio	Varistor

3. Manual override with lock

- Using a screwdriver, push the manual override button that is located in the head portion of the solenoid valve in order to directly push the spool valve downward, thus causing the valve to switch.
- 2) With the button remaining pushed down, turn it approximately 90° clockwise or counterclockwise to maintain the manual override locked state.
- To revert to the original state, keep the button pushed down and turn it approximately 90° clockwise.

Construction

De-energized



Operation principle <De-energized>

The spool $\widehat{3}$ is pushed upward by the force of the spring $\widehat{4}$ and the air passage between port $\widehat{2}$ and port $\widehat{3}$ is opened and port $\widehat{1}$ is blocked.

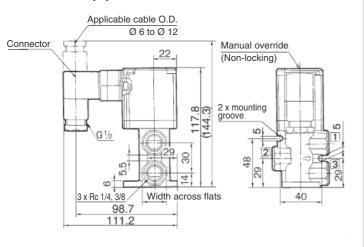
Air flow direction: $\boxed{1} \longleftrightarrow \mathsf{Block}, \boxed{2} \longleftrightarrow \boxed{3}$

Energized

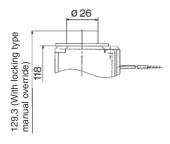
<Energized>

When the coil (§) is energized the plunger (?) is pulled down depressing the spool (3) via the overtravel assembly (8) and the air passage between port (1) and port (2) is opened and port (3) is blocked.

Air flow direction: $\boxed{1} \longleftrightarrow \boxed{2}$, $\boxed{3} \longleftrightarrow Block$

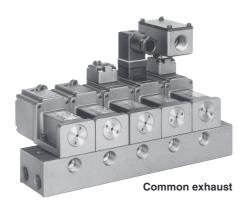

Component Parts

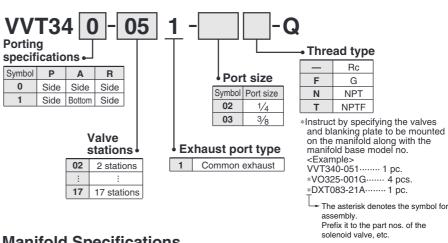
No.	Description	Material	Note			
1	Body	Aluminium die-casted	Platinum silver			
2	Cover	Aluminium die-casted	Platinum silver			
3	Spool valve	Aluminium, NBR				


^{*1} These values have been calculated according to ISO 6358 and indicate the flow rate under standard conditions with an inlet pressure of 0.6 MPa (relative pressure) and a pressure drop of 0.1 MPa.

Dimensions

DIN terminal (D)


With locking manual override


VT325 Series

Manifold Specifications

The VT325 series Manifold Model has a B mount type with common exhaust.

How to Order Manifold

Manifold Specifications

Manifold type	B mount		
Max. number of stations	17 stations Note)		
Applicable solenoid valve	VO325-00		

Exhaust port type	Port	location/Port	size	Port direction				
Litiaust port type	Р	Α	R	Р	Α	R		
Common	Base 1/4, 3/8	Base 1/4, 3/8	Base 1/4, 3/8	Side	Side/Bottom	Side		
Option	В	Blanking plate (With gasket, screw) DXT083-21A						

Note) If there are more than 4 stations, supply air from both P ports and exhaust from both R ports.

Accessory for Applicable

Description	Part no.	Qty.
Manifold gasket	DXT083-13-1	1 pc.
Hexagon socket head screw	DXT083-19-1	2 pcs.

Flow Rate Characteristics/Weight

		Flow rate characteristics														
Valve model	1 → 2 (P → A)			$2 \rightarrow 3 \text{ (A} \rightarrow \text{R)}$			$3 \rightarrow 2 (R \rightarrow A)$				$2 \rightarrow 1 (A \rightarrow P)$					
	C [dm ³ /(s·bar)]	b	Cv	C [I/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [I/min /ANR)] *1	C [dm³/(s·bar)]	b	Cv	C [l/min /ANR)] *1	C [dm3/(s-bar)]	b	Cv	C [l/min /ANR)] *1
VO325																
VO325V (Vacuum spec. type)	4.1	0.24	1.0	1004	4.4	0.18	1.0	1042	4.5	0.15	1.0	1048	4.3	0.23	1.0	1047

^{*1} These values have been calculated according to ISO 6358 and indicate the flow rate under standard conditions with an inlet pressure of 0.6 MPa (relative pressure) and a pressure drop of 0.1 MPa

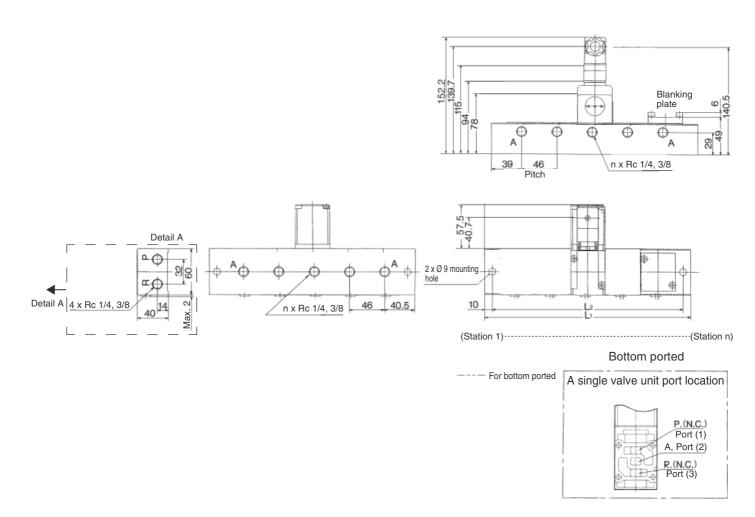
^Precautions

⚠ Warning

When mounting valves on the manifold base, the mounting orientation is decided. If it is mounted in the wrong direction, connected equipment may malfunction. Mount it by referring to external dimensions on page 1453. Besides, the external dimensions are showing the case of N.C. specifications.

Changing from N.C. to N.O.

The valves are assembled as N.C. valves at the time of shipment.


By removing the two retaining screws from the desired valves, and rotating each valve body 180° and reassembling it on the manifold base, it is possible to reassemble an N.C. valve as an N.O. valve. (When doing so, make sure that a gasket is attached to the mounting surface of the valve.) Properly tighten the

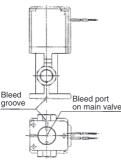
The tightening torque of the retaining screws is 3 N·m.

Dimensions

Common exhaust

								n:	Stations
Symbol	2	3	4	5	6	7	8	9	10
L1	131	177	223	269	315	361	407	453	499
L2	111	157	203	249	295	341	387	433	479

Formula: $L_1 = 46n + 39$, $L_2 = 46n + 19$


VT325 Series

Specific Product Precautions

Be sure to read this before handling the products.

- The bottom of the solenoid valve has a breather hole for the main valve. Take proper measures to prevent this hole from being blocked as this will lead to a malfunction.
- * Ordinarily, when the solenoid valve is mounted on a metal surface, it can breathe through the breather hole, via the breather groove. However, in particular, if the surface to be mounted is made of the rubber, the rubber could deform and block the hole.

Bottom of the solenoid valve

Make sure that dust and/or other foreign materials do not enter the valve from the unused port (e.g. exhaust port).

How to Calculate the Flow Rate

For obtaining the flow rate, refer to front matter.

How to Use DIN Terminal

1. Disassembly

- 1) After loosening the screw ①, then if the housing ④ is pulled in the direction of the screw ①, the connector will be removed from the body of equipment (solenoid, etc.).
- 2) Pull the screw ①, and then remove gasket ② or ③.
- 3) On the bottom part of the terminal block ③, there's a cut-off part (indication of an arrow) ⑥. If a small flat head screwdriver is inserted between the opening in the bottom, terminal block ③ will be removed from the housing ④.
- (Refer to the figure below.)
 4) Remove the cable gland ⑤ and plain washer ⑥ and rubber seal ⑦.

2. Wiring

- 1) Pass the cable ® through the cable gland ⑤, washer ⑥, rubber seal ⑦ in this order, and then insert them into the housing ④.
- 2) Dimensions of the cable ® are the figure as below. Skin the cable and crimp the crimped terminal ® to the edges
- 3) Remove the screw with washer from the bracket (a). (Loosen in the case of Y shape type terminal.) As shown in the below figure, mount a crimped terminal (a), and then again tighten the screw (a).
 - Note) Tighten within the tightening torque of 0.5 N·m $\pm 15\%$.
 - Note: a It is possible to wire even in the state of bare wire. In that case, loosen the screw with washer 39 and place a lead wire into the bracket 30, and then tighten it once again.
 - b The maximum size for the round terminal (9) is 1.25 mm²—3.5 and for the Y terminal is 1.25 mm²—4.
 - c Cable 8 outside diameter:
 - Ø 6 to Ø 12 mm

Note) For the one with the outside diameter ranged between Ø 9 to Ø 12 remove the inside parts of the rubber seal ⑦ before using.

Connector for DIN Terminal

Description	Part no.			
DIN connector	GDM2C			

3. Assembly

- Terminal box 3 connected with housing 4 should be reinstated. (Push it down until you hear the click sound.)
- Putting rubber seal ⑦, plain washer ⑥, in this order into the cable introducing slit on the housing ④, then further tighten the cable gland ⑤ securely.
- 3) By inserting gasket ② or ③ between the bottom part of the terminal box ③ and a plug on an equipment, screw in ① on top of the housing ④ and tighten it.
 - Note) Tighten within the tightening torque of 0.5 N·m ±20 %.
 - Note: The orientation of a connector can be changed arbitrarily, depending on the combination of a housing 4 and a terminal box 3.

∧ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) 1, and other safety regulations.

↑ Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate

injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious

njury.

⚠ Danger:

Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious . . .

injury.

ISO 4414: Pneumatic fluid power – General rules relating to systems.
 ISO 4413: Hydraulic fluid power – General rules relating to systems.
 IEC 60204-1: Safety of machinery – Electrical equipment of machines.
 (Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety.

Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalogue information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalogue.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

↑ Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

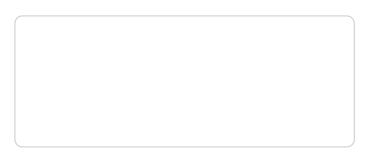
Limited warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements". Read and accept them before using the product.

Limited warranty and Disclaimer

- The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ²⁾ Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products.
- 2) Vacuum pads are excluded from this 1 year warranty. A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty

Compliance Requirements


- The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

↑ Caution

SMC products are not intended for use as instruments for legal metrology.

Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country.

Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

SMC Corporation (Europe)

Austria	+43 (0)2262622800
Belgium	+32 (0)33551464
Bulgaria	+359 (0)2807670
Croatia	+385 (0)13707288
Czech Republic	+420 541424611
Denmark	+45 70252900
Estonia	+372 6510370
Finland	+358 207513513
France	+33 (0)164761000
Germany	+49 (0)61034020
Greece	+30 210 2717265
Hungary	+36 23513000
Ireland	+353 (0)14039000
Italy	+39 03990691
Latvia	+371 67817700

) www.smc.at www.smc.be www.smc.bg www.smc.hr www.smc.cz www.smcdk.com www.smcpneumatics.ee smc@info@smcee.ee www.smc.fi www.smc-france.fr www.smc.de www.smchellas.gr www.smc.hu www.smcautomation.ie sales@smcautomation.ie www.smcitalia.it www.smc.lv

office@smc.at info@smc.be office@smc.bg office@smc.hr office@smc.cz smc@smcdk.com smcfi@smc.fi info@smc-france.fr info@smc.de sales@smchellas.gr office@smc.hu mailbox@smcitalia.it info@smc.lv

Lithuania +370 5 2308118 www.smclt.lt **Netherlands** +31 (0)205318888 www.smc.nl Norway +47 67129020 Poland +48 222119600 +351 214724500 www.smc.eu Portugal Romania +40 213205111 Russia +7 8127185445 Slovakia **Slovenia** +386 (0)73885412 www.smc.si Spain +34 945184100 +46 (0)86031240 www.smc.nu Sweden **Switzerland** +41 (0)523963131 www.smc.ch Turkey UK +44 (0)845 121 5122 www.smc.uk

www.smc-norge.no www.smc.pl www.smcromania.ro +421 (0)413213212 www.smc.sk www.smc.eu

info@smclt.lt info@smc.nl post@smc-norge.no office@smc.pl apoioclientept@smc.smces.es smcromania@smcromania.ro www.smc-pneumatik.ru info@smc-pneumatik.ru office@smc.sk office@smc.si post@smc.smces.es smc@smc nu info@smc.ch +90 212 489 0 440 www.smcpnomatik.com.tr info@smcpnomatik.com.tr

sales@smc.uk